838 research outputs found

    Radio Wave Propagation Through Vegetation

    Get PDF

    New application of dynamic magnetic resonance imaging for the assessment of deglutitive tongue movement

    Get PDF
    Background: Deglutitive motion of the tongue may function to maintain tooth position. However, the causation between abnormal patterns of orofacial muscle function and dental malocclusion remains unclear. To clarify the pathogenic mechanism of malocclusion, it is important to determine the relative positional relationship between the tongue tip and incisor edge or the dorsal tongue and palate during deglutition. Here, we assessed the utility of 3-T segmented cine-magnetic resonance (MR) imaging, combined with static MR images for hard tissue visualization, in assessing the relationship between the tongue and the surrounding tissues during deglutitive tongue movement. Methods: Cine-MR images were acquired from three healthy female volunteers during deglutition who had no history of swallowing disorder or other chronic illness, normal alignment and occlusion, and a skeletal class I relationship. Three cine-MR images were taken during deglutition in accordance with an auditory cue for each volunteer. During static imaging, custom-made, contrast-medium-filled clear retainers were positioned in the mouth to allow visualization of the upper and lower incisors and hard palate boundaries. Static images were superimposed onto images of the three stages in deglutitive tongue movement, which were selected from a series of cine-MR images. These superimpositions were assessed five times by tracing cephalometric parameters to examine the reproducibility of the method. Results: Traces varied little across repeated measurements, and all subjects had a similar pattern of dorsal tongue movement. Tongue-to-palate contact increased slightly during the first to second stage of swallowing and abruptly increased during the second to third stage, while the tongue tip position remained constant. Conclusions: Segmented cine-MR imaging combined with static MR images is useful for assessing soft tissue motion during deglutition. This method is particularly useful in dentistry to evaluate the relationship between tongue function and maxillofacial morphology in terms of orthodontic treatment and orofacial myofunctional therapy, and for improving tongue movement during speech therapy

    Frequency Characteristics of Path Loss and Delay-Angular Profile of Propagation Channels in An Indoor Room Environment in SHF Bands

    Get PDF

    Site-Specific Propagation Loss Prediction in 4.9 GHz Band Outdoor-to-Indoor Scenario

    Get PDF
    Owing to the widespread use of smartphones and various cloud services, user traffic in cellular networks is rapidly increasing. Especially, the traffic congestion is severe in urban areas, and effective service-cell planning is required in the area for efficient radio resource usage. Because many users are also inside high buildings in the urban area, the knowledge of propagation loss characteristics in the outdoor-to-indoor (O2I) scenario is indispensable for the purpose. The ray-tracing simulation has been widely used for service-cell planning, but it has a problem that the propagation loss tends to be underestimated in a typical O2I scenario in which the incident radio waves penetrate indoors through building windows. In this paper, we proposed the extension method of the ray-tracing simulation to solve the problem. In the proposed method, the additional loss factors such as the Fresnel zone shielding loss and the transmission loss by the equivalent dielectric plate were calculated for respective rays to eliminate the penetration loss prediction error. To evaluate the effectiveness of the proposed method, we conducted radio propagation measurements in a high-building environment by using the developed unmanned aerial vehicle (UAV)-based measurement system. The results showed that the penetration loss of direct and reflection rays was significantly underestimated in the ray-tracing simulation and the proposed method could correct the problem. The mean prediction error was improved from 7.0 dB to &minus 0.5 dB, and the standard deviation was also improved from 8.2 dB to 5.3 dB. The results are expected to be utilized for actual service-cell planning in the urban environment. Document type: Articl

    Experimental Characterization of Millimeter-wave Indoor Propagation Channels at 28 GHz

    Get PDF

    Polarization behavior of discrete multipath and diffuse scattering in urban environments at 4.5 GHz

    Get PDF
    The polarization behavior of the mobile MIMO radio channel is analyzed from polarimetric double-directional channel measurements, which were performed in a macrocell rural environment in Tokyo. The recorded data comprise non-line-of-sight, obstructed line-of-sight, and line-of-sight conditions. The gradient-based maximum-likelihood estimation framework RIMAX was used to estimate both specular and dense multipath components. Joint angular-delay results are gained only for the specular components. The dense multipath components, which may be attributed to diffuse scattering, can be characterized only in delay domain. Different characteristics describing the polarization behavior and power-weighted cross- and copolarization ratios for both types of components are introduced. Statistical analysis of long measurement track segments indicates global trends, whereas local analysis emphasizes specific behavior such as polarization dependency on angle of incidence in streets and under shadowing conditions. The results also underline the importance of modeling changing and transient propagation scenarios which are currently not common in available MIMO channel models
    • …
    corecore